On the minimum edge cover and vertex partition by quasi-cliques problems
نویسندگان
چکیده
A γ-quasi-clique in a simple undirected graph is a set of vertices which induces a subgraph with the edge density of at least γ for 0 < γ < 1. A cover of a graph by γ-quasi-cliques is a set of γ-quasi-cliques where each edge of the graph is contained in at least one quasi-clique. The minimum cover by γ-quasi-cliques problem asks for a γ-quasi-clique cover with the minimum number of quasi-cliques. A partition of a graph by γ-quasi-cliques is a set of γ-quasi-cliques where each vertex of the graph belongs to exactly one quasi-clique. The minimum partition by γ-quasicliques problem asks for a vertex partition by γ-quasi-cliques with the minimum number of quasicliques. We show that the decision versions of the minimum cover and partition by γ-quasi-cliques problems are NP-complete for any fixed γ satisfying 0 < γ < 1. Key-words: clique, quasi-clique, edge cover, vertex partition, undirected graph ∗ College of Computing (GATECH) Georgia Institute of Technology (Georgia Tech), Atlanta, GA † Department of Computer Engineering, Bilkent University, Ankara, Turkey ‡ CNRS and LIP, ENS Lyon, France ha l-0 07 95 42 9, v er si on 2 5 M ar 2 01 3 Sur les problèmes de la couverture minimale des arêtes et de la partition minimale des sommets d’un graphe par des quasi-cliques Résumé : Un γ-quasi-clique, pour 0 < γ < 1, dans un graphe simple nonorienté est un sous-ensemble de sommets dont le sous-graphe induit a une densité d’arêtes supérieure ou égale à γ. Un ensemble de γ-quasi-cliques couvrant toutes les arêtes d’un graphe est appelé une couverture par des γ-quasi-cliques. Le problème de couverture minimale par des γ-quasi-cliques consiste à trouver une couverture par des γ-quasi-cliques ayant le plus petit nombre de quasi-cliques. Une partition des sommets d’un graphe par des quasi-cliques est un ensemble de γ-quasi-cliques telle que chaque sommet du graphe appartient à un seul quasi-clique de l’ensemble. Le problème de partition minimale par des γ-quasicliques consiste à trouver une partition par des γ-quasi-cliques ayant le plus petit nombre de quasi-cliques. Nous démontrons que les problèmes de décision associés aux problèmes de couverture minimale et partition minimale par des γ-quasi-cliques sont NP-complets pour tout γ satisfaisant 0 < γ < 1 fixé. Mots-clés : clique, quasi-clique, couverture des arêtes, partition des sommets, graphe nonorienté ha l-0 07 95 42 9, v er si on 2 5 M ar 2 01 3 Minimum covering and partitioning by quasi-cliques 3
منابع مشابه
Differential Approximation Algorithms for Some Combinatorial Optimization Problems
We use a new approximation measure, the differential approximation ratio, to derive polynomial-time approximation algorithms for minimum set covering (for both weighted and unweighted cases), minimum graph coloring and bin-packing. We also propose differentialapproximation-ratio preserving reductions linking minimum coloring, minimum vertex covering by cliques, minimum edge covering by cliques ...
متن کاملClustering with Partial Information
The Correlation Clustering problem, also known as the Cluster Editing problem, seeks to edit a given graph by adding and deleting edges to obtain a collection of vertex-disjoint cliques, such that the editing cost is minimized. The Edge Clique Partitioning problem seeks to partition the edges of a given graph into edge-disjoint cliques, such that the number of cliques is minimized. Both problem...
متن کامل0333 - 3590 Clustering with partial information
The Correlation Clustering problem, also known as the Cluster Editing problem, seeks to edit a given graph by adding and deleting edges to obtain a collection of vertex-disjoint cliques, such that the editing cost is minimized. The Edge Clique Partitioning problem seeks to partition the edges of a given graph into edge-disjoint cliques, such that the number of cliques is minimized. Both problem...
متن کاملApproximation Algorithms for Edge Partitioned Vertex Cover Problems
We consider a natural generalization of the Partial Vertex Cover problem. Here an instance consists of a graph G = (V,E), a cost function c : V → Z, a partition P1, . . . , Pr of the edge set E, and a parameter ki for each partition Pi. The goal is to find a minimum cost set of vertices which cover at least ki edges from the partition Pi. We call this the Partition-VC problem. In this paper, we...
متن کاملA simple lower bound on edge coverings by cliques
Assume that G = G(V, E) is an undirected graph with vertex set V and edge set E. A clique of G is a complete subgraph. An edge clique-covering is a family of cliques of G which cover all edges of G. The edge clique-cover number, Be( G), is the minimum number of cliques in an edge clique-cover of G. For results and applications of the edge clique-cover number see [1-4]. Observe that Be(G) does n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013